Uniqueness of Solutions to a Two-Dimensional Mean Problem

I. BOROSH AND C. K. CHUI

Department of Mathematics, Texas A & M University, College Station, Texas 77843

Communicated by Oved Shisha

Received May 11, 1976

Let $0 < r_m < 1$, $r_m^m \le \rho$ for all large m, and let $w_n = e^{i2\pi/n}$, n = 1, 2, ... For a function $f(z) = \sum a_n z^n$, holomorphic in the open unit disk U, let $s_n(f) = (1/n) \sum_{k=1}^n f(r_n w_n^k)$, the nth arithmetic mean of f over the circle $|z| = r_n$. We prove that if $\rho < 1$ and $a_n = 0(n^{-\alpha_1})$ for $\alpha_1 = 1.728...$, then f is uniquely determined by the two-dimensional means $s_n(f)$, n = 1, 2,... We also prove that for each ρ , $0 < \rho < 1$, there is a nontrivial f, holomorphic in U, such that $s_n(f) = 0$ for n = 1, 2,... with $r_n = \rho^{1/n}$.

1. Introduction and Results

Let U denote the open unit disk |z| < 1 in the complex plane and H the space of functions holomorphic in U. Let $0 < r_n < 1$, n = 1, 2,..., and consider the means

$$s_n(f) = \frac{1}{n} \sum_{k=1}^{n} f(r_n e^{i2\pi k/n})$$
 (1.1)

of $f \in H$ on the concentric circles $|z| = r_n$. In this note, we study the problem of uniqueness of f when $s_n(f)$, n = 1, 2, ..., are given. This problem was posed in [2] and discussed in [1]. It was proved, in particular, that if $r_n{}^n \leqslant \rho$, $\rho \leqslant \frac{1}{2}$, for all n, and $f(z) = \sum a_n z^n$ with $\sum |a_n| < \infty$, then f is uniquely determined by the sequence $s_n(f)$, n = 1, 2, The condition $\rho \leqslant \frac{1}{2}$ was a technical one. Here, by using a different method we prove a uniqueness result for any ρ , $0 < \rho < 1$. Of course a "smoothness" condition on f is required. In fact, we also obtain a negative result for each ρ , $0 < \rho < 1$. We state our main results in the following theorems.

THEOREM 1. Let $0 < r_n < 1$ with $r_n^n \le \rho < 1$ for all large n. Then there exists an α_ρ , $1 \le \alpha_\rho < \alpha_1 = 1.728...$, such that any function $f(z) = \sum_{n=0}^{\infty} a_n z^n$, satisfying $a_n = 0(n^{-\alpha_\rho})$ and $s_n(f) = 0$ for n = 1, 2,..., must be identically zero.

In the above theorem, α_{ρ} is uniquely determined by $\phi(\rho, \alpha_{\rho}) = 2\rho$, where

$$\phi(z,s) = \sum_{n=1}^{\infty} \frac{z^n}{n^s}$$
 (1.2)

is the so-called polylogarithm function (cf. [3, 4]). In particular, α_1 satisfies $\zeta(\alpha_1)=2$ where ζ is the Riemann zeta-function. Calculation gives $\alpha_1=1.728...$ As a simple consequence of the above theorem, we have

COROLLARY 1. Let $0 < r_n < 1$ with $r_n^n \le 0.79$ for all large n. Then any function $f(z) = \sum_{n=0}^{\infty} a_n z^n$, satisfying $a_n = o(n^{-1})$ and $s_n(f) = 0$ for n = 1, 2, ..., must be the zero function.

On the other hand, we have the following negative result.

THEOREM 2. Let $0 < \rho < 1$ be given and $r_n = \rho^{1/n}$. Then there exists a complex number $\beta = \beta(\rho)$ such that the function $f(z) = \phi(z, \beta)$ satisfies $s_n(f) = 0$ for all n, n = 1, 2, ...

2. PROOF OF THE MAIN RESULTS

We first prove the following:

LEMMA. Let $C = (c_{i,j})$, i, j = 1, 2,..., be an upper triangular matrix with nonzero diagonal elements. Suppose that for some $\alpha \ge 0$,

$$\sum_{j=k+1}^{\infty} |c_{k,j}| j^{-\alpha} \leqslant k^{-\alpha} |c_{k,k}|, \qquad k = 1, 2, \dots$$
 (2.1)

Then for every $b = (b_1, b_2,...,)^T$ satisfying $b_n = o(n^{-\alpha})$ and Cb = 0, b = 0.

Proof. Suppose $b \neq 0$. Since $n^{\alpha}b_n \to 0$, there exists a k such that $k^{\alpha} \mid b_k \mid$ is maximum. We pick the largest such k, so that $k^{\alpha} \mid b_k \mid > n^{\alpha} \mid b_n \mid$ for all n > k. Hence, since Cb = 0 and $c_{k,k} \neq 0$, we have

$$\mid c_{k,k} \mid \mid b_k \mid \leqslant \sum_{j=k+1}^{\infty} \mid c_{k,j} \mid \mid b_j \mid < k^{\alpha} \mid b_k \mid \sum_{j=k+1}^{\infty} \mid c_{k,j} \mid j^{-\alpha}.$$

This is a contradiction to (2.1).

We can now prove Theorem 1. Without loss of generality, we assume that $r_n^n \le \rho$ for all n. Let $f(z) = \sum a_n z^n$ be in H satisfying $a_n = o(n^{-\alpha \rho})$ and n = 1, 2,... As in [1], it can easily be shown that $f(0) = a_0 = 0$, and

$$s_n(f) = \sum_{k=1}^{\infty} r_k^{nk} a_{nk} . {(2.2)}$$

Hence, $a = (a_1, a_2,...)^T$ satisfies the equation Ca = 0 with $C = (c_{k,j})$ and

$$c_{k,j} = 0$$
 if $k \nmid j$
= r_k^i if $k \mid j$.

Since $\phi(x, \alpha_{\rho})/x$ is monotone increasing in x, and $r_k{}^k \leq \rho$ for all k, we have $\phi(r_k{}^k, \alpha_{\rho})/r_k{}^k \leq \phi(\rho, \alpha_{\rho})/\rho = 2$. Thus, we have

$$\sum_{t=2}^{\infty} r_k^{kt} t^{-\alpha_{\rho}} \leqslant r_k^{k}$$

or

$$\sum_{t=2}^{\infty} r_k^{kt} (kt)^{-\alpha_{\rho}} \leqslant k^{-\alpha_{\rho}} r_k^{k},$$

which is (2.1) with $\alpha = \alpha_o$. Hence, a = 0, or $f \equiv 0$, by the above lemma.

To prove Corollary 1, we observe that $\phi(x, 1)/x = -[\log(1-x)]/x = 2$ for x = 0.79... Hence, as above, if $r_n^n \le 0.79$, then $\phi(r_n^n, 1) < 2r_n^n$, which gives (2.1) with $\alpha = 1$.

To prove Theorem 2, we set $r_n = \rho^{1/n}$ where ρ is any given positive number less than 1. For this fixed ρ , it was shown in [3] that the polylogarithm function $\phi(\rho, s)$ has many complex zeros. Let $\beta = \beta(\rho)$ be one of them, and define $f(z) = \phi(z, \beta)$. We have

$$s_n(f) = \sum_{t=1}^{\infty} \frac{\rho^t}{(nt)^{\beta}} = \frac{1}{n^{\beta}} \phi(\rho, \beta) = 0$$

for all n = 1, 2, ...

We remark that from [3], Re $\beta(\rho)$ < 1 and we can choose $\beta(\rho)$ such that $\beta(\rho) \to 1$ as $\rho \to 1^-$.

REFERENCES

- G. R. BLAKLEY, I. BOROSH, AND C. K. CHUI, A two-dimensional mean problem, J. Approximation Theory 22 (1978), 11-26.
- C. K. CHUI AND C. H. CHING, Approximation of functions from their means, in "Approximation Theory" (G. G. Lorentz, Ed.), pp. 307-311, Academic Press, New York, 1973.
- B. FORNBERG AND K. S. KÖLBIG, Complex zeros of the Jonquiere or polylogarithm function, Math. Comp. 29 (1975), 582-599.
- C. TRUESDELL, On a function which occurs in the theory of the structure of polymers, Ann. of Math. 40 (1945), 144-157.