Uniqueness of Solutions to a Two-Dimensional Mean Problem

I. Borosh and C. K. Chui
Department of Mathematics, Texas A \& M University, College Station, Texas 77843

Communicated by Oved Shisha
Received May 11, 1976

Let $0<r_{m}<1, r_{m}^{m} \leqslant \rho$ for all large m, and let $w_{n}=e^{i 2 \pi / n}, n=1,2, \ldots$ For a function $f(z)=\sum a_{n} z^{n}$, holomorphic in the open unit disk U, let $s_{n}(f)=$ ($1 / n$) $\sum_{k=1}^{n} f\left(r_{n} w_{n}^{k}\right)$, the nth arithmetic mean of f over the circle $|z|=r_{n}$. We prove that if $\rho<1$ and $a_{n}=0\left(n^{-\alpha_{1}}\right)$ for $\alpha_{1}=1.728 \ldots$, then f is uniquely determined by the two-dimensional means $s_{n}(f), n=1,2, \ldots$. We also prove that for each $\rho, 0<\rho<1$, there is a nontrivial f, holomorphic in U, such that $s_{n}(f)=0$ for $n=1,2, \ldots$ with $r_{n}=\rho^{1 / n}$.

1. Introduction and Results

Let U denote the open unit disk $|z|<1$ in the complex plane and H the space of functions holomorphic in U. Let $0<r_{n}<1, n=1,2, \ldots$, and consider the means

$$
\begin{equation*}
s_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} f\left(r_{n} e^{i 2 \pi k / n}\right) \tag{1.1}
\end{equation*}
$$

of $f \in H$ on the concentric circles $|z|=r_{n}$. In this note, we study the problem of uniqueness of f when $s_{n}(f), n=1,2, \ldots$, are given. This problem was posed in [2] and discussed in [1]. It was proved, in particular, that if $r_{n}{ }^{n} \leqslant \rho$, $\rho \leqslant \frac{1}{2}$, for all n, and $f(z)=\sum a_{n} z^{n}$ with $\sum\left|a_{n}\right|<\infty$, then f is uniquely determined by the sequence $s_{n}(f), n=1,2, \ldots$ The condition $\rho \leqslant \frac{1}{2}$ was a technical one. Here, by using a different method we prove a uniqueness result for any $\rho, 0<\rho<1$. Of course a "smoothness" condition on f is required. In fact, we also obtain a negative result for each $\rho, 0<\rho<1$. We state our main results in the following theorems.

Theorem 1. Let $0<r_{n}<1$ with $r_{n}{ }^{n} \leqslant \rho<1$ for all large n. Then there exists an $\alpha_{\rho}, 1 \leqslant \alpha_{\rho}<\alpha_{1}=1.728 . .$. , such that any function $f(z)=\sum_{n=0}^{\infty}$ $a_{n} z^{n}$, satisfying $a_{n}=0\left(n^{-\alpha_{\rho}}\right)$ and $s_{n}(f)=0$ for $n=1,2, \ldots$, must be identically zero.

In the above theorem, α_{ρ} is uniquely determined by $\phi\left(\rho, \alpha_{\rho}\right)=2 \rho$, where

$$
\begin{equation*}
\phi(z, s)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}} \tag{1.2}
\end{equation*}
$$

is the so-called polylogarithm function (cf. [3, 4]). In particular, α_{1} satisfies $\zeta\left(\alpha_{1}\right)=2$ where ζ is the Riemann zeta-function. Calculation gives $\alpha_{1}=$ $1.728 . .$. As a simple consequence of the above theorem, we have

Corollary 1. Let $0<r_{n}<1$ with $r_{n}{ }^{n} \leqslant 0.79$ for all large n. Then any function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, satisfying $a_{n}=o\left(n^{-1}\right)$ and $s_{n}(f)=0$ for $n=$ $1,2, \ldots$, must be the zero function.

On the other hand, we have the following negative result.
Theorem 2. Let $0<\rho<1$ be given and $r_{n}=\rho^{1 / n}$. Then there exists a complex number $\beta=\beta(\rho)$ such that the function $f(z)=\phi(z, \beta)$ satisfies $s_{n}(f)=0$ for all $n, n=1,2, \ldots$

2. Proof of the Main Results

We first prove the following:
Lemma. Let $C=\left(c_{i, j}\right), i, j=1,2, \ldots$, be an upper triangular matrix with nonzero diagonal elements. Suppose that for some $\alpha \geqslant 0$,

$$
\begin{equation*}
\sum_{j=k+1}^{\infty}\left|c_{k, j}\right| j^{-\alpha} \leqslant k^{-\alpha}\left|c_{k, k}\right|, \quad k=1,2, \ldots \tag{2.1}
\end{equation*}
$$

Then for every $b=\left(b_{1}, b_{2}, \ldots,\right)^{T}$ satisfying $b_{n}=o\left(n^{-\alpha}\right)$ and $C b=0, b=0$.
Proof. Suppose $b \neq 0$. Since $n^{\alpha} b_{n} \rightarrow 0$, there exists a k such that $k^{\alpha}\left|b_{k}\right|$ is maximum. We pick the largest such k, so that $k^{\alpha}\left|b_{k}\right|>n^{\alpha}\left|b_{n}\right|$ for all $n>k$. Hence, since $C b=0$ and $c_{k, k} \neq 0$, we have

$$
\left|c_{k, k}\right|\left|b_{k}\right| \leqslant \sum_{j=k+1}^{\infty}\left|c_{k, j}\right|\left|b_{j}\right|<k^{\alpha}\left|b_{k c}\right| \sum_{j=k+1}^{\infty}\left|c_{k, j}\right| j^{-\alpha} .
$$

This is a contradiction to (2.1).
We can now prove Theorem 1. Without loss of generality, we assume that $r_{n}{ }^{n} \leqslant \rho$ for all n. Let $f(z)=\sum a_{n} z^{n}$ be in H satisfying $a_{n}=o\left(n^{-\alpha_{\rho}}\right)$ and $n=1,2, \ldots$ As in [1], it can easily be shown that $f(0)=a_{0}=0$, and

$$
\begin{equation*}
s_{n}(f)=\sum_{k=1}^{\infty} r_{k}^{n k} a_{n k} \tag{2.2}
\end{equation*}
$$

Hence, $a=\left(a_{1}, a_{2}, \ldots\right)^{T}$ satisfies the equation $C a=0$ with $C=\left(c_{k, j}\right)$ and

$$
\begin{aligned}
c_{k, j} & =0 & & \text { if } k \nmid j \\
& =r_{k}{ }^{i} & & \text { if } k \mid j .
\end{aligned}
$$

Since $\phi\left(x, \alpha_{\rho}\right) / x$ is monotone increasing in x, and $r_{k}{ }^{k} \leqslant \rho$ for all k, we have $\phi\left(r_{k}{ }^{k}, \alpha_{\rho}\right) / r_{k}{ }^{k} \leqslant \phi\left(\rho, \alpha_{\rho}\right) / \rho=2$. Thus, we have

$$
\sum_{t=2}^{\infty} r_{k}^{k t} t^{-\alpha_{\rho}} \leqslant r_{k}^{k}
$$

or

$$
\sum_{t=2}^{\infty} r_{k}^{k t}(k t)^{-\alpha_{\rho}} \leqslant k^{-\alpha_{\rho}} r_{k}^{k},
$$

which is (2.1) with $\alpha=\alpha_{\rho}$. Hence, $a=0$, or $f \equiv 0$, by the above lemma.
To prove Corollary 1, we observe that $\phi(x, 1) / x=-[\log (1-x)] / x=2$ for $x=0.79 \ldots$. Hence, as above, if $r_{n}{ }^{n} \leqslant 0.79$, then $\phi\left(r_{n}{ }^{n}, 1\right)<2 r_{n}{ }^{n}$, which gives (2.1) with $\alpha=1$.

To prove Theorem 2, we set $r_{n}=\rho^{1 / n}$ where ρ is any given positive number less than 1. For this fixed ρ, it was shown in [3] that the polylogarithm function $\phi(\rho, s)$ has many complex zeros. Let $\beta=\beta(\rho)$ be one of them, and define $f(z)=\phi(z, \beta)$. We have

$$
s_{n}(f)=\sum_{t=1}^{\infty} \frac{\rho^{t}}{(n t)^{\beta}}=\frac{1}{n^{\beta}} \phi(\rho, \beta)=0
$$

for all $n=1,2, \ldots$
We remark that from [3], $\operatorname{Re} \beta(\rho)<1$ and we can choose $\beta(\rho)$ such that $\beta(\rho) \rightarrow 1$ as $\rho \rightarrow 1^{-}$.

References

1. G. R. Blakley, I. Borosh, and C. K. Chui, A two-dimensional mean problem, J. Approximation Theory 22 (1978), 11-26.
2. C. K. Chui and C. H. Ching, Approximation of functions from their means, in "Approximation Theory" (G. G. Lorentz, Ed.), pp. 307-311, Academic Press, New York, 1973.
3. B. Fornberg and K. S. Kölbig, Complex zeros of the Jonquiere or polylogarithm function, Math. Comp. 29 (1975), 582-599.
4. C. Truesdell, On a function which occurs in the theory of the structure of polymers, Ann. of Math. 40 (1945), 144-157.
